
LESSONS LEARNED AND COST ANALYSIS OF HOSTING A FULL STACK
OPEN DATA CUBE (ODC) APPLICATION ON THE AMAZON WEB

SERVICES (AWS)

1Syed R Rizvi, 2Brian Killough, 1Andrew Cherry, 1Sanjay Gowda

1Analytical Mechanics Associates, Hampton, VA
2NASA Langley Research Center, Hampton, VA

ABSTRACT

The Open Data Cube (ODC) initiative, with support from
the Committee on Earth Observation Satellites (CEOS)
System Engineering Office (SEO) has developed a state-of-
the-art suite of software tools and products to facilitate the
analysis of Earth Observation data. This paper presents a
short summary and cost analysis of our experience using
Amazon Web Services (AWS) to host one such software
product, the CEOS Data Cube (CDC) web-based User
Interface (UI). In order to provide adaptability, flexibility,
scalability, and robustness, we leverage widely-adopted and
well-supported technologies such as the Django web
framework and the AWS Cloud platform. The UI has
empowered users by providing features that assist with
streamlining data preparation, data processing, data
visualization, and the sub-setting of Analysis Ready Data
(ARD) products in order to achieve a wide variety of Earth
imaging objectives.

Index Terms— Open Data Cube, ODC, CEOS, Remote
Sensing, Earth Observation, Satellite, Amazon Web Services

1. INTRODUCTION

The Committee on Earth Observation Satellites (CEOS)
System Engineering Office (SEO) has supported the Open
Data Cube (ODC) initiative to provide a data architecture
solution that has value to its global users and increases the
impact of EO satellite data [1-2]. The Open Data Cube
(ODC) is an open-source platform for managing satellite
data. We have developed software products and tools around
the core ODC. The CEOS Data Cube (CDC) web-based
User Interface (UI) is one such well-known tool [3-4]. The
UI has empowered users by providing features that assist
with streamlining data preparation, data processing, data
visualization, and exporting ingested data in order to achieve
a wide variety of Earth imaging objectives. In a nutshell, the
UI allows analyses to be run from a web interface (Figure 1).
Due to the efforts put into developing the UI, CEOS SEO is

uniquely able to provide substantial contributions to the
ODC initiative and to support global implementations. The
web interface, available to the public at http://ec2-52-201-
154-0.compute-1.amazonaws.com/, has been used by
members of the remote sensing community around the
world, and has also been presented at multiple conferences,
tutorials, training sessions, and international presentations
[5-7].

The UI (along with the ODC core) utilizes a number of
different software frameworks, including Python, JavaScript,
PostgreSQL, and the Django web framework. It is hosted on
an Ubuntu operating system and the source code is publicly
available under the Apache License, Version 2.0. The
Python programming language is greatly suited for research
in scientific computing, remote sensing, Earth science, and
machine learning due to its extensive standard library and
selection of add-on packages, its readability, and its ease of
programming compared to other languages, and the great
number of help resources easily found online. The ODC
utilizes PostgreSQL to meet security and performance
requirements by organizing the data into stacks of consistent,
time-stamped geographic “tiles” which can be rapidly
manipulated in an HPC environment. The database not only
organizes the data and metadata for the ODC core and
Django framework, but can also be used to track every
observation back to the point of collection, thus providing
data provenance. AWS has been used as a one-stop solution
for web hosting, parallel and distributed processing, and data
storage, distribution, and analysis.

The bulk of our usage has been Amazon Elastic Compute
Cloud (Amazon EC2) instances, which we are using for both
analysis of remote sensing data and the hosting of the UI.
EC2, in general, makes web-scale cloud computing easier
for developers. Amazon EC2's simple web service interface
allows us to obtain and configure capacity with minimal
friction. With EC2, we created an Amazon Machine Image
(AMI) containing an operating system, application
programs, and configuration settings.

https://ntrs.nasa.gov/search.jsp?R=20190002550 2020-05-10T03:29:23+00:00Z

http://ec2-52-201-154-0.compute-1.amazonaws.com/
http://ec2-52-201-154-0.compute-1.amazonaws.com/

Figure 1. Web User Interface (UI) of CEOS Data Cube (CDC).

We are currently running two instances that are used

together as a clustered computing system for both our
analysis cases and the UI operations. The two instances
subscribe to a single job queue and the main process divides
large tasks into smaller tasks in order to take advantage of
all CPU cores and memory available to us. This gives us the
option of adding additional instances in the future, scaling
horizontally to handle periods of heavy demand.

S3 has been used mostly for distribution of sample
datasets to interested parties and the long-term storage of
such datasets. We have developed an interface that includes
descriptions of our datasets, the datasets themselves, and
instructions for the use of the data, as well as an
administrative interface to manage the UI itself. The fully-
customizable source code of the UI is available at our public
repository [3]. Interested parties can download the source,
and build their own UIs. In the future, we may keep a larger
amount of data on S3 and put links to the relevant data on
our UI for users to download.

2. COST BURDEN

We began using AWS for our hosting and storage needs
in April of 2016. A sample report of our costs grouped by
service from April 2017 to January 2018 can be seen in
Figure 2. This paper will describe the cost during this
duration in order to illustrate some insights obtained from
our recent experience. Additionally, Table 1 and 2 show the
monthly AWS calculator for the Amazon EC2 Instances and
the Amazon EBS Volumes respectively [8].

The bulk of our cost has been the EC2 instances. We are
currently running two c4.8xlarge instances for use in our
parallel processing cluster for a combined 72 virtual CPU
cores and 120 GB of RAM. The EC2 instances have a
predictable and constant cost as they have 100% uptime and
are used to host our Data Cube UI. Note that the actual

utilization of this 100% uptime is low. Since many of the
analyses involve loading and processing multiple gigabytes
of data per region, we have been able to optimize our
systems to use all available resources for each task.

Secondary costs to the EC2 instances are in the EC2-
Other category and include snapshots, storage, and elastic IP
addresses.

This cost is driven mostly by the amount of storage we
are using at any given time. The raw data (mostly GeoTIFF
scene data) is ingested, i.e. pre-processed into aligned,
compressed blocks which are 7-8 times smaller. For
example, in one of our case studies related to determining
historical trends in the water quality of Lake Chad in
Cameroon, we created a small data cube (0.25 degrees
square) for the southern portion of the lake. The raw data in
this case study was around 920GB (unzipped) but the pre-
processed NetCDF files amounted to around 117GB. After
pre-processing, the raw data is not needed for any later
processing so we are only hosting the pre-processed data,
totaling roughly 500GB per server. We are currently
replicating data between the servers, but plan to move to
shared Elastic File Systems for dataset storage in the future.

S3 was our lowest cost, showing only small spikes during
times of large data transfer. Note that large data transfer
occurs when moving the raw data to the cloud for ingestion.
CEOS SEO aims to reach operational Data Cubes in 20
countries by 2020. As of early 2018, there are three
operational Data Cubes (Australia, Colombia, and
Switzerland) [6], seven in development (Georgia, Moldova,
Taiwan, Uganda, United States, United Kingdom, and
Vietnam) [7] and 29 other countries with expressed interest.
As the interest and involvement from these counties grow in
the future, the S3 cost will go up in when we move to make
more of our datasets available to additional UI users.

Figure 2. Costs grouped by service.

Table 1. Monthly Calculator for Amazon EC2 Instances (Compute) [8].

Description Instances Usage Type Billing Option Monthly Cost
Worker 3 100% utilized per month Linux on c4.2xlarge On-demand $874.02
Notebook Server 1 100% utilized per month Linux on m4.xlarge On-demand $146.40
CEOS Main (Burstable) 1 1% utilized per month Linux on t2.2xlarge On-demand $2.97
Worker Image 1 0% utilized per month Linux on m4.2xlarge On-demand $0.00

Table 2. Monthly Calculator for Amazon EBS Volumes (Storage) [8].

Description Volumes Volume Type Storage IOPS Baseline Throughput (MBs/sec)

CEOS Main 1 General Purpose SSD (gp2) 300GB 900 160

CEOS Main Data 1 Throughput Optimized HDD (st1) 8192GB 0 320

Misc. (attached) 6 General Purpose SSD (gp2) 75GB 225 128

Misc. (unattached) 3 General Purpose SSD (gp2) 75GB 225 128

3. JUPYTER NOTEBOOKS

Recall that the bulk of our usage has been EC2 instances,
which are used for both analysis of remote sensing data and
hosting the UI. We also host an ODC Jupyter Notebook
server on EC2. These notebooks act as interactive Python
development environments which allow developers to divide
their code into blocks which can be run independently of
each other, with variables stored in the background and the
environment persisted between blocks. The notebooks were
instrumental in providing hands-on training to many
international users in the remote sensing community and
have been presented at multiple conferences, tutorials,
training sessions, and international presentations [5-7].

4. TESTING APPROACH

Testing a web application such as the UI component of

ODC is a complex task because it is made of several layers
of logic – from HTTP(S) request handling, to form
validation and processing, to template rendering. We heavily
utilize Django’s automated test-execution framework and

assorted utilities. It simulates requests, inserts test data,
inspects the application’s output and generally verifies the
source code for correctness. We have utilized the
combination Unittest/Nose2 testing framework for
automated unit tests, code coverage, etc. The Selenium and
Locust web testing frameworks have also been explored for
additional UI testing.

5. WORK-IN-PROGRESS

Apart from the plans for AWS usage that have been

described in the previous sections, the main features we are
currently targeting for near-term development are Elastic
File System, SPOT Processing, and increasing the utilization
of our current resources.

The current plan is to set up an EFS system to cut back
on our data duplication and to allow for greater scalability as
we add more EC2 instances. Some added benefits of this
approach include using the same system for passing data and
intermediate products back and forth between EC2 instances
during parallel processing, and removing the need to transfer
large amounts of data when we create a new instance.

Although this will slightly increase our storage costs per
month with our current number of instances, it allows for
greater scalability and will reduce costs when we have many
more instances. Figure 5 illustrates the cost of storage with
and without EFS as additional nodes are added. Currently,
we are using EBS ST1 volumes which are $.045 per GB per
month. Our parallel processing requires keeping redundant
data on each server. Therefore, we pay 2 × $.045 = $0.09
per GB per month. On the other hand, EFS storage costs
$0.30 per GB month, so if we were running 6+ instances
then using EFS would become cost-effective.

Figure 5. The theoretical growth of cost with EFS and
without EFS, as nodes are added.

6. FUTURE PLANS

For the coming year, we intend to investigate the

following ODC concepts with AWS:

1. Develop a "Data Cube on Demand" function using

hosted AWS datasets.
2. Test the use of "spot" on-demand processing to

support global data cube deployments.
3. Test the use of Lambda functions for finding new

datasets to ingest into data cubes.
4. Test how EC2 instance performance scales with

multiple data cube users.
5. Test elastic load balancing for horizontal scaling of

EC2 instances for data cubes.
6. Test AWS "Workspaces" to host QGIS and Jupyter

Notebooks for cloud analysis.
7. Test the use of Docker Containers for on-demand

computing instances
8. Explore the use of QGIS to read data cube content

directly from S3

7. CONCLUSION

Amazon AWS has served as a unified solution for all of our
CDC storage and analysis needs. We have both expanded

the use of our currently employed features and branched out
to several new services offered by Amazon. The services
AWS provides have allowed us to create an internationally
accessible interface where users in the remote sensing
community can see our progress, access our data, and
understand the impact of open satellite data and its
application. The AWS-hosted CDC UI and Jupyter
notebooks play a critical role in demonstrating how the
Open Data Cube can take advantage of the AWS
infrastructure and exploit open datasets in order to achieve
the CEOS SEO goal of having operational Data Cubes in 20
countries by 2020.

8. ACKNOWLEDGMENT

The authors would like to acknowledge the efforts of Jesse
Harrison and Alfredo Delos Santos on the early
development of the CEOS ODC web-based UI.

9. DISCLAIMER

Any use of trade, product, or firm names is for descriptive
purposes only and does not imply endorsement by the U.S.
Government.

10. REFERENCES

[1] Open Data Cube Website:
https://www.opendatacube.org.
[2] Open Data Cube GitHub Repository:
https://github.com/opendatacube.
[3] CEOS Data Cube User Interface GitHub Repository:
https://github.com/ceos-seo/data_cube_ui.
[4] CEOS Data Cube web-based User Interface:
http://ec2-52-201-154-0.compute-1.amazonaws.com/.
[5] The 1st CEOS Open Data Cube Workshop:
http://ceos.org/home-2/1st-ceos-open-data-cube-workshop/.
[6] G. Giuliani et al., “Building an Earth Observations Data
Cube: lessons learned from the Swiss Data Cube (SDC) on
generating Analysis Ready Data (ARD),” Big Earth Data,
vol. 1, no. 1, pp. 1–18, Nov. 2017.
[7] A. Singh, “New satellite data sharing system, Vietnam
Data Cube, introduced,” GeoSpatialWorld, Mar-2018.
[Online]. Available:
https://www.geospatialworld.net/news/new-satellite-data-
sharing-system-viet-nam-data-cube-introduced. [Accessed:
15-Mar-2018].
[8] AWS Calculator for CEOS Data Cube systems. [Online].
Available:
https://calculator.s3.amazonaws.com/index.html#r=IAD&s=
EC2&key=calc-FAF98858-1C94-4FDF-AC1E-
CEE1F33EDDE6. [Accessed: 03-Jan-2018].

https://www.opendatacube.org/
https://github.com/opendatacube
https://github.com/ceos-seo/data_cube_ui
http://ec2-52-201-154-0.compute-1.amazonaws.com/
http://ceos.org/home-2/1st-ceos-open-data-cube-workshop/
https://www.geospatialworld.net/news/new-satellite-data-sharing-system-viet-nam-data-cube-introduced
https://www.geospatialworld.net/news/new-satellite-data-sharing-system-viet-nam-data-cube-introduced
https://calculator.s3.amazonaws.com/index.html#r=IAD&s=EC2&key=calc-FAF98858-1C94-4FDF-AC1E-CEE1F33EDDE6
https://calculator.s3.amazonaws.com/index.html#r=IAD&s=EC2&key=calc-FAF98858-1C94-4FDF-AC1E-CEE1F33EDDE6
https://calculator.s3.amazonaws.com/index.html#r=IAD&s=EC2&key=calc-FAF98858-1C94-4FDF-AC1E-CEE1F33EDDE6

	Lessons Learned and cost analysis of hosting a full STACK OPEN data Cube (ODC) application on the Amazon Web Services (AWS)
	Abstract

